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Introduction
Although the aeronautical industry utilizes state of the art
materials and production techniques, adhesive-based primary
structures still have limited application due to the inexistence of
reliable nondestructive monitoring methods for damage
detection [1,2].
This work presents a novel technique for identifying the
existence of weak adhesion in an adhesive bond layer by
employing Lamb waves (LW) in conjunction with machine
learning algorithms.

Results

Figure 4 – Loss in each epoch: (Right) CNN, (Left) CNN.

Experimental Methodology
Finite element models were used in order to create the required
dataset to apply the machine learning algorithms. The model
was created with two aluminum sheets with 150 x 150 x 2 mm
and an overlap of 25 x 150 mm. A mesh size of 1.5 mm was
chosen. The adhesive simulated was Nagase T-836/R-810 with
a layer of 0.2 mm and the sensor/actuator were placed along
the longitudinal line, centered at a distance of 30 mm from the
edge of each substrate, shown as red dots in Fig. 1. The weak
adhesion was simulated by altering the interface force between
the adhesive and substrates. The LW, which are a form of guided
waves, were generated using a Hann windowed force pulse with
a frequency of 100 kHz applied on the horizontal surface of the
plate (at the actuator location). The time-series of the amplitude
of vibration at the sensor location was measured.

Figure 1 – Simulation of LW passing though the adhesive joint and mesh used.

Figure 2 –Features extracted from the raw signal marked in blue.

Discussion

A data set was created with a total of 1000 simulated cases, where
only the strongest 5% were considered as “no damaged”. The raw
time signals were then processed in order to obtain relevant
features for the machine learning methods. The chosen features
were the magnitudes and the time of the peaks present in the
signals (Fig. 2). The data were then applied to a conventional
feedforward neural network (ANN) and a convolutional neural
network (CNN). As the number of “no damaged” cases was small
compared with the possible “damaged“ ones, “no damaged” cases
were artificially created, by applying Gaussian noise to the actual
cases, until the dataset included the same number of cases of each
type.

Conclusions

This work presented a novel approach using CNN and ANN to
determine, with relevant accuracy of over 97% in the test batch,
the presence or not of a weak adhesion in a single lap joint. The
results will allow for further developments of adhesives in
various high-end industries, such as the aeronautical field.
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Figure 3 – Accuracy in each epoch: (Right) CNN, (Left) ANN.

Both the ANN and CNN used 2 classes, namely “damaged” and
“no damaged”, and presented an accuracy of over 97% and a
loss under 0.1 for both testing and training samples. It is also
possible to see results with a low number of epochs (Figs. 3-4).
The confusion matrices show that that the algorithm does not
classify a “damaged” case as “no damaged” (Fig. 5), which, in the
aeronautical field, could be critical.

Figure 5 – Confusion matrix of best Epoch: (Right) ANN, (Left) CNN.
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